skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Tengfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by a multimodal neuroimaging study for Alzheimer's disease, in this article, we study the inference problem, that is, hypothesis testing, of sequential mediation analysis. The existing sequential mediation solutions mostly focus on sparse estimation, while hypothesis testing is an utterly different and more challenging problem. Meanwhile, the few mediation testing solutions often ignore the potential dependency among the mediators or cannot be applied to the sequential problem directly. We propose a statistical inference procedure to test mediation pathways when there are sequentially ordered multiple data modalities and each modality involves multiple mediators. We allow the mediators to be conditionally dependent and the number of mediators within each modality to diverge with the sample size. We produce the explicit significance quantification and establish theoretical guarantees in terms of asymptotic size, power, and false discovery control. We demonstrate the efficacy of the method through both simulations and an application to a multimodal neuroimaging pathway analysis of Alzheimer's disease. 
    more » « less